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Abstract: Tensors are a basic modelling structure for multidimensional problems in physics
for more than a century. In the last decade, new results on tensor based algorithms have
been achieved in applied mathematics. Additionally, numerical tools e.g. for CP, tucker, and
tensor train decompositions are available. This open invited track welcomes all application and
theory related submissions showing the use of tensor methods for modelling, data analysis,
representation, reduction, (supervisory) controller design, fault diagnosis and reconfiguration in
control engineering.
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1. MOTIVATION

Many of todays control engineering challenges are nonlin-
ear and/or large scale, e.g. control of distributed networks,
smart grids, medical homecare, building automation sys-
tems, etc. Modelling and control problems for these appli-
cations are sometimes hard to solve efficiently, because of
the curse of dimensionality and their hybrid nature, e.g.
discrete-event and continuous-valued signals coexist and
interact. Normally, complexity of modelling and controller
design tasks grow with the dimension of the problem as
well as with the ability to model nonlinear behaviour.

Tensor decompositions are known since 90 years, see Hitch-
cock (1927). But they have been applied only recently
to structured analysis of big data in various application
domains like medical signal processing, chemometrics, im-
age processing and many more, see Cichocki et al. (2015).
Their ability to reduce large scale problems by orders
of magnitude without loosing too much information has
shown to be superior to standard matrix techniques, see
Kolda and Bader (2009) and Oseledets (2011). Although
the underlying optimization problems are in general non-
convex and sometimes even ill-posed, current tools com-
pute approximate solutions in reasonable time which then
can be used for efficient algorithms in engineering applica-
tions, see Bader et al. (2015) and Vervliet et al. (2016).

The applicability of tensor methods for control engineer-
ing has been shown within the class of multilinear time-
invariant (MTI) systems. These are a subclass of polyno-
mial systems and a superclass of bilinear as well as binary
systems. Moreover, they are able to model hybrid systems
behaviour, see Pangalos et al. (2014). Tensor methods also
have shown to be useful for Boolean networks, see Cheng
et al. (2011) and pneumatic models, see Grof et al. (2011).

? For Evaluation: TC 1.3 Discrete Event and Hybrid Systems.

2. RESTRICTIONS

All papers in this session should be concerned with multi-
index structures, i.e. problems of at least dimension 3.
Due to the novelity of the approaches, there will be no
restrictions to certain application domains or methods.
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